介绍完前面的基础知识后,本节通过一个具体的实例来看下编写爬虫的具体过程。以爬取豆瓣网 top250 电影的信息为例,top250 电影的网址为: https://movie.douban.com/top250。在浏览器的地址栏里输入 https://movie.douban.com/top250,我们会看到如下内容:

image.png

对于每一部电影需要爬取的内容如下图所示:

image.png

如上图所示,爬取的内容包括电影排名、电影名称、电影评分、电影属于哪个国家、电影类型、电影的上映时间以及电影的导演、主演。了解了要爬取哪些内容之后,接下来需要知道这些内容对应的 html 内容。

image.png

知道了对应的 html 内容之后,接下来就是解析 html,获取我们想要的内容。下面我们就逐步介绍爬取的过程:

# 1.获取 html

image.png

如上图所示,由于每页只展示 25 个电影的信息,要想获取所有电影的信息,需要通过一个循环来获取全部 10 页的内容。

# 1.1 导入所需的第三方库

import requests
from bs4 import BeautifulSoup
import time
import csv
1
2
3
4

# 1.2 发送请求

# 1.2.1 设置 headers

由于豆瓣网会有反扒的机制,所以在请求网页的时候,需要设置headers。headers 的内容如下:

headers = {
    'User-Agent': ******,
    'Cookie': ******
}
1
2
3
4

在实际运行时,需要将 ** 改成真实的 User-Agent 和 Cookie。

# 1.2.2 生成 url

第一页的 url 为:https://movie.douban.com/top250?start=0&filter=。第二页的 url 为:https://movie.douban.com/top250?start=25&filter=。第三页的 url 为:https://movie.douban.com/top250?start=50&filter=。从上面三个 url 的组成可以看出,只有 start 后面的数字在变,其他的都不变。我们可以根据这个规律来获取所有的 url。

# 1.2.3 发送请求获取响应

for i in range(10):
    response = requests.get(
        'https://movie.douban.com/top250?'+'start='+str(25*i)+'&filter=', headers=headers)
1
2
3

# 2.解析 html

# 2.1 响应解析

    soup = BeautifulSoup(response.text, 'lxml')
    ol = soup.ol
    all_li = ol.find_all('li')
    for li in all_li:
        rank = li.find('em', class_="").string
        title = li.find('span', class_="title").string
        rating = li.find('span', class_="rating_num").string
        info = li.find('div', class_="bd").p.get_text().strip()
        country = info.split('/')[-2]
        genre = info.split('/')[-1]
        release_time = info.split('\n')[1].split('/')[0].replace(" ", "")
        director_actor = li.find('div', class_="bd").p.next_element.replace(
            "\n", "").replace(" ", "")

        ranks.append(rank)
        titles.append(title)
        ratings.append(rating)
        countrys.append(country)
        genres.append(genre)
        release_times.append(release_time)
        director_actors.append(director_actor)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

由上面的 html 内容可以看到,每部电影的信息处于<li></li>标签内,而所有的<li></li>标签又位于<ol></ol>标签内。于是,首先获取 ol 标签的内容,然后再获取所有的 li 标签的内容。获取到所有的 li 标签之后,对每个 li 标签进行遍历,获取我们想要的内容。在所有的内容获取完成后,将内容加入到相应的存储列表中。

# 3.存储内容

在获取我们想要的内容之后,将内容存储到 csv 文件。代码如下:

with open('top250.csv', 'w') as file:
    writer = csv.writer(file, delimiter=',')

    writer.writerow(["排名", "名称", "评分", "国家", "类型", "上映时间", "导演&主演"])

    for i in range(250):
        writer.writerow([
            ranks[i],
            titles[i],
            ratings[i],
            countrys[i],
            genres[i],
            release_times[i],
            director_actors[i]
        ])
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

# 4.完整代码

综合上面每一步的代码之后,便可以得到完整的代码:

import requests
from bs4 import BeautifulSoup
import time
import csv

headers = {
    'User-Agent': ******,
    'Cookie': ******
}

ranks = []
titles = []
ratings = []
inqs = []
countrys = []
genres = []
release_times = []
director_actors = []

for i in range(10):
    response = requests.get(
        'https://movie.douban.com/top250?'+'start='+str(25*i)+'&filter=', headers=headers)

    soup = BeautifulSoup(response.text, 'lxml')
    ol = soup.ol
    all_li = ol.find_all('li')
    for li in all_li:
        rank = li.find('em', class_="").string
        title = li.find('span', class_="title").string
        rating = li.find('span', class_="rating_num").string
        info = li.find('div', class_="bd").p.get_text().strip()
        country = info.split('/')[-2]
        genre = info.split('/')[-1]
        release_time = info.split('\n')[1].split('/')[0].replace(" ", "")
        director_actor = li.find('div', class_="bd").p.next_element.replace(
            "\n", "").replace(" ", "")

        ranks.append(rank)
        titles.append(title)
        ratings.append(rating)
        countrys.append(country)
        genres.append(genre)
        release_times.append(release_time)
        director_actors.append(director_actor)

    time.sleep(3)


with open('top250.csv', 'w') as file:
    writer = csv.writer(file, delimiter=',')

    writer.writerow(["排名", "名称", "评分", "国家", "类型", "上映时间", "导演&主演"])

    for i in range(250):
        writer.writerow([
            ranks[i],
            titles[i],
            ratings[i],
            countrys[i],
            genres[i],
            release_times[i],
            director_actors[i]
        ])
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

# 5.结果

将获取到的内容存储到 csv 文件中。csv 文件的部分内容如下图所示: image.png 这样我们便完成了豆瓣 top250 电影信息的爬取。

# 6.总结

本节我们通过一个实例熟悉了爬虫的爬取过程。

更新于: 12/30/2021, 2:46:39 AM